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Water flow to subterranean drains is described by the Boussinesq equation. To solve this equation, 
analytical solutions comprising constants, such as the transmissivity and drainable porosity have been 
developed; however, these solutions assume that free surface of the water falls instantly over the 
drains. The aim of this investigation is to present a finite difference solution of the differential equation 
using a drainable porosity variable and a fractal radiation condition. Here, two schemes are presented: 
the first one, with an explicit head and drainable porosity, both joined by a functional relationship, 
called mixed formulation; and the second one, called head formulation, with only the head. By using a 
lineal analytical solution, both methods have been validated and the nonlinear part was stable and brief. 
The proposed numerical solution is useful for the hydraulic characterization of soils with inverse 
modelation and to improve the designs of agricultural drainage systems, when taking into 
consideration that the assumptions of the classical solution have been eliminated. To evaluate the 
descriptive capacity of the numerical solution, these solutions were used to describe a drainage 
experiment performed in the laboratory. The results show that the cumulative drained depth is well 
represented by these solutions with the fractal radiation and the variable drainable porosity. 
 
Key words: Fractal radiation condition, variable drainable porosity, analytical solution, mixed formulation, head 
formulation. 

 
 
INTRODUCTION 
 
Subsurface drainage systems are used to control the 
depth of the water-table and to reduce the water of the 
root zone or prevent soil salinity in the soil profile. The 
analysis of water dynamics in these systems has been 
studied accepting the validity of Darcy’s law (1956) and 
depending on the scale of study; two differential 
equations can be used. The first is the Richards equation 
(1931), resulting from the application of the mass 
conservation principle in the flow of water in an elemental 
volume of porous medium, and the Darcy’s law which 
permits the consideration of the geometry of the drains  in  
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boundary conditions, but the simulation of water 
dynamics with two or three dimensional numerical 
solutions can be arduous (Zavala et al., 2007). The 
second equation is the Boussinesq equation (1904) for 
an unconfined aquifer, resulting from the application of 
the mass conservation principle, Darcy’s law, and the 
Dupuit-Forcheimer hypothesis concerning the hydro-
statics distribution of pressure (Bear, 1972), weighted soil 
properties and the vertical system. It is at most a two-
dimensional equation. The aquifer is modeled on the 
ground and the geometry of the drains is introduced as 
mathematical lines or dots in a two-dimensional or one-
dimensional analysis, respectively. 

The one-dimensional Boussinesq equation has been 
the basis for developing approximate analytical solutions 
of the water dynamics in a drainage system within either 
a  permanent  or  transitory  regimen  (Hooghoudt,  1940;  



 

 
 
 
 
Dumm, 1954; Shukla et al., 1999; Upadhyaya and 
Chauhan, 2001; van de Giesen et al., 2005; Spanoudaki 
et al., 2010). In the derivation of the Glover-Dumm 
equation for the transitory regimen, it is assumed that the 
aquifer transmissivity and drainable porosity are constant 
and the free surface falls instantly over the drains. Due to 
these three assumptions it does not adequately represent 
actual conditions. The solution is likely to be of limited 
applicability. However, considering the most represen-
tative conditions lead to analytical difficulties, the use of 
numerical methods is required to develop solutions of the 
Boussinesq equation (Hall and Moench, 1972; Hogarth et 
al., 1999). In the research done by Zavala et al. (2007) 
the real boundary conditions are analyzed in detail. The 
authors, basing their proposals on the fractal geometry 
concepts and in drainage experience, recommended a 
fractal radiation condition, which contains the lineal 
radiation (Fuentes et al., 1997). 

With respect to drainable porosity, Fuentes et al. (2009) 
based in the drainable depth and drained depth concepts, 
and in drainage experience, propose an analytical 
expression which involves the soil water retention curve. 
These authors used the finite element method to solve a 
one-dimensional Boussinesq equation with good results 
in terms of stability, convergence and accuracy of the 
solution. In a one-dimensional scheme the finite element 
method can be equivalent to the finite difference method 
(Russell and Wheeler, 1983). A finite difference scheme, 
based in the Laasonen scheme, was develop by Zataráin 
et al. (1998) in order to numerically solve the Richards 
equation, applied to water infiltration phenomenon in the 
soil with excellent results. In addition to its high accuracy, 
stability and convergence, the scheme has the added 
advantage of its intuitive nature, based on a local mass 
balance. This scheme can also be used to solve the 
agricultural drainage one-dimensional Boussinesq 
equation. The aim of this investigation is to show a 
numerical solution of the Boussinesq equation, with a 
different method based on a local mass balance. The 
drainable porosity is considered variable and the 
boundary conditions at the drains are fractal radiation. 
 
 

THEORY 
 

The Boussinesq equation 
 

In the study of the water dynamics in subsurface 
agricultural drainage systems by using the Boussinesq 
equation, the variations in hydraulic head along the drain 
pipes (direction y) are negligible with respect to head 
variations in the cross section (direction x). It is the one-
dimensional Boussinesq equation which is a result of the 
continuity equation and the Darcy’s law, namely: 
 

( ) ( ) w

H H
H T H R

t x x

∂ ∂ ∂ 
µ = + ∂ ∂ ∂ 

                        (1) 
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where ( )Hµ  is the storage capacity, ( )H H x, t=  is the 

elevations of the free surface or hydraulic head above the 
impervious layer, and is a function the horizontal 

coordinate ( )x  and the time ( )t , ( )T H  is the 

transmissivity given by ( ) sT H K H= , wR  is the 

recharge volume in the unit time by area unit aquifer, and 

sK is the saturated hydraulic conductivity. The storage 

capacity is defined by: 

 

( ) ( )
dW d

H H H
dH dH

υ
µ = = υ +                          (2) 

 

where ( )Hυ  is the drainable porosity as a function of 

the head, W H= υ  is the drainable depth. The equality 

of µ = υ  is when the drainable porosity is independent of 

the head (Fuentes et al., 2009). 
 
 
The drainable porosity 
 
An expression of the storage capacity is given by 
Fuentes et al. (2009): 
 

( ) ( )s sH H Hµ = θ − θ −                          (3) 

 

where sθ  is the saturated volumetric water content, and 

( )sH Hθ −  represents the water content evolution in the 

position sz H= , while the free surface decreases, and z 

is the elevation of ground surface. 
The drainable porosity is deduced from joining 

Equations (2) and (3), namely (Fuentes et al., 2009): 

 

( ) ( ) ( )
H H

s s

0 0

1 1
H H dH H H dH

H H
 υ = µ = θ − θ − ∫ ∫    (4)  

 

where H  is the integration variable. 
To calculate the storage capacity and the drainable 

porosity it is necessary to provide the soil water retention 
curve. The model of van Genuchten (1980) has been 
widely accepted in field and laboratory studies, namely: 
 

( ) ( )

m
n

r s r

d

1

−
  ψ
 θ ψ = θ + θ − θ +  

ψ   

             (5) 

 

where rθ  is the residual volumetric water content, dψ   is 
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the pressure scale parameter, and m and n are positives 
form parameters. 

The introduction of Equation (5) in Equations (3) and 
(4) permitted to obtain the following storage capacity and 
drainable porosity: 
 

( ) ( )

m
n

s
s r

d

H H
H 1 1

−   −  µ = θ − θ − +    ψ     

            (6)  

 

( ) ( ) ( )
( )

s d

s d

H
md n

s r

H H

H 1 1 d
H

ψ
−

∗ ∗

− ψ

 ψ
υ = θ − θ − + ψ ψ 

  
∫  

                                        (7) 
 
The drainable porosity does not have a closed analytical 
form and can be calculated by numerical integration. A 
closed form can be obtained from the Fujita-Parlange 
model; this is obtained from the Fujita (1952) diffusivity 
equation and from the relationship between hydraulic 
conductivity and hydraulic diffusivity of Parlange et al. 
(1982), (Fuentes et al., 1992): 
 

( )
s c

2

s r

K 1
D( )

1

 λ − α
Θ =  

θ − θ − αΘ 
                                     (8) 

 

( )
( )

s

1
K K

1

Θ −β + β − α Θ  Θ =
− αΘ

                        (9) 

 

where ( ) ( )r s rΘ = θ − θ θ − θ  is the effective saturation, 

α  and β  are non dimensional form parameters that 

0 1< α <  and 0 1< β < ; and cλ  is the Bouwer scale 

(1964).. The retention curve is obtained from the 

hydraulic diffusivity ( ) ( )D K d dθ = θ ψ θ , considering 

sθ = θ  when 0ψ = , is obtained: 

 

( )
( ) ( )

( )
( )c

11
ln ln

1 1 1

    − β + β − α Θα − αΘ β − α 
ψ Θ = ψ +    

β − α Θ β −β − α Θ     
                                                  (10) 
 

where c cψ = −λ . 

The drainable porosity is obtained from Equations (4) 
and (10): 
 

( ) ( )
( )

( )

( )s

s

H H

c
s r

H

1
H 1 ln

H 1

Θ −

Θ −

 − β + β − α Θ λ 
υ = θ − θ −  

β − αΘ   

       (11)  

 
 
 
 

The ( )θ ψ  function is implicit in Equation (10) and 

therefore the ( )Hυ  function. If α = β  is accepted, this 

then leads to the hydraulic conductivity model proposed 

by Gardner (1958): ( ) ( )s cK K expψ = ψ λ , used in 

theoretical studies. The corresponding ( )θ ψ  curve is: 

 

( )
( ) ( )

s r
r

c1 exp

θ − θ
θ ψ = θ +

α + − α ψ ψ
                      (12) 

 
The storage capacity is obtained from Equation (3): 
 

( ) ( ) ( )
1

s
s r

c

H H
H 1 1 exp

−   − 
µ = θ − θ − α + − α   

λ    

 

                                      (13) 
 
and the drainable porosity is obtained from Equation (11): 
 

( ) ( )
( )

[ ]
s cc

s r

s c

1 exp H H
H 1 ln

H 1 exp H

  − α + α − λ λ  υ = θ − θ −   
α − α + α − λ    

 

                                                             (14) 
 
The drainable depth is (Fuentes et al., 2009): 

 

( ) ( ) ( )
( )( )

c
s r s

s c

1
H H H ln

1 exp H H

  λ  
= θ − θ − −    

α − α + α − − λ      

l
 

                                                           (15) 
 
The saturated volumetric water content can be 

assimilated to the soil porosity ( )φ , this is calculated with 

the formula t o1φ = − ρ ρ , where ( )tρ  is the bulk 

density and ( )oρ  is the particles density; the residual 

volumetric water content ( )rθ  is considered to be zero. 

 
 
Initial and boundary conditions 

 
The hydraulic head counting from above the impermeable 

barrier ( )H x, t  is associated with the head ( )h x, t  

counting from above the drains by using: 

 

( ) ( )oH x, t D h x, t= +                                    (16) 

 

where oD  is the distance from the  impermeable  barrier. 



 

 
 
 
 
Transversal variation of h at the beginning is considered 
as the initial condition: 
 

( ) ( )sh x,0 h x=                                                (17) 

 

Regarding the boundary conditions in x 0=  and x L= , 

many forms have been assumed. The Glover-Dumm 
solution is established assuming that the head on the 
drain instantly reaches zero value (Dumm, 1954) this is 
the Dirichlet condition or first order. The Fuentes et al. 
(1997) solution is obtained from experimental analysis 
(Fragoza et al., 2003), supported by the argument that 
the Darcy flow in the drains is proportional to the head 

( )q h∝ ; this is radiation lineal condition or third order. 

The lineal radiation flux can be expressed as 

sq K h L= − κ , where κ  is the non dimensional 

conductance coefficient of the soil-drain interface. From 
the Fuentes et al. (1997) solution the Glover-Dumm 
solution can be obtained if this coefficient is infinite. In 
this line of research, Zavala et al. (2007) proposed a 

power law between the flux and head, ( )
2s

s sq q h h= , 

where sh  is the value on the drain in the initial time, sq  is 

the corresponding flux to sh  and it is function of the soil-

drain interface characteristic. For the s  parameter, the 

authors argued that it is defined by s D E= , where D  

is the effective fractal dimension to the soil-drain 

interface, and E 3=  is the Euclidean dimension of 

physical space. The s  and effective porosity relation of 

interface is obtained from the equation given by Fuentes 
et al. (2001): 
 

( )
s 2s

1 1− φ + φ =                                                (18) 

 

Thus, the fractal radiation condition for the Boussinesq 
equation is obtained as follows: 
 

2s

s s

s

h h
K q 0

x h

 ∂
− ± = 

∂  
, x 0, L=                        (19) 

 

where the positive sign corresponds to x 0=  and the 

negative sign to x L= . L is the distance between drains. 
Equation (19) contains as particular cases the lineal 

radiation condition when s 1 2=  and the quadratic 

radiation condition when s 1= . In a system of parallel 

drains, the drained water flows by length unit at each 
drain is: 
 

( ) ( ) ( )
2s

d o s sQ t 2 D h 0, t q h 0, t h= +       ,          (20) 
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and the cumulative drained depth by: 
 

( ) ( )
t

d

0

1
t Q t dt

L
= ∫l                                                (21)    

 

where t  is the integration variable. 
 
 

NUMERICAL SOLUTION 
 
Numerical schemes 
 
The one-dimensional Boussinesq equation is solved 
using the difference finite method, adapting the numerical 
scheme proposed by Zataráin et al. (1998) for a similar 
problem, but at the scale of the Richards equation. The 
scale adjustment of the Boussinesq equation requires the 
discretization of the domains as shown in Figure 1. To 
solve the numerical solution of Equation, interpolation 
parameters are introduced: 
 

i i

i 1 i

x x

x x

+γ

+

−
γ =

−
, 

j j

j 1 j

t t

t t

+ω

+

−
ω =

−
                                   (22) 

 

where 0 1≤ γ ≤  and 0 1≤ ω ≤ ; i 1, 2,...=  and 

j 1, 2,...=  are the space and time indices, respectively. 

The dependent variable ( )H  in an intermediate node 

i + γ  for all j  is estimated as: 

 

( )j j j

i i i 1H 1 H H+γ += − γ + γ                                    (23) 

 

while the intermediate time j+ ω  for all i  is estimated 

as: 
 

( )j j j 1

i i iH 1 H H+ω += − ω + ω                                    (24) 

 

The continuity equation applies in time jt +ω , the time 

derivative can be discretized according to the following 
two methods: 

 

( )
j

j 1 j 1 j j

i i i i

ji

H H H

t t

+ω
+ +∂ υ υ − υ

=
∂ ∆

, j j 1 jt t t+∆ = −           (25) 

  

( )
j

j 1 j
j i i
i

ji

H H H

t t

+ω
+

+ω∂ υ −
= µ

∂ ∆
                        (26) 

 
The first one is called a mixed  scheme,  and  the  second 
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j 1t −

j 1t +

1
x

2
x

3
x

n 2
x − n 1

x − n
x

i 1
x − ( )i 1

x
− +γ i

x
i

x +γ i 1
x +

i 1x −∆ ix∆ i 1x +∆

jt

ω

j 1
∆t −

j
∆t

 
 

Figure 1. Scheme of the solution domain of Boussinesq equation: where t  is the time (temporal coordinate), x  is the length 

(spatial coordinate), ω  is the time interpolation factor, γ  is the space interpolation factor, i  is the spatial index, j  is the 

temporal index, z∆  is the spatial increment and t∆  is the temporal increment. 

 
 
 

one a head scheme. In the first, the head and the water 
volume appears explicitly, while in the second only the 
head. Both formulations are the same when the drainable 
porosity is independent of the head and the head scheme 
does not require numerical integration in Equation to 
calculate the drainable porosity. The spatial derivate 
discretization around the node i-th is: 
 

( ) ( ) ( ) ( )

j jj

i i 1

ii

Hq HqHq

x x

+ω +ω+ω

+γ − −γ
−∂

=
∂ ∆

,  

 

( ) ( ) ( )i i i 1 i 1 ix 1 x x x x− +∆ = − γ − + γ −            (27) 

 

The water flow by length unit defined in the intermediate 
nodes is: 
 

( )
j j

j j i 1 i
ii

i 1 i

H H
 Hq T

x x

+ω +ω
+ω +ω +

+γ+γ
+

−
= −

−
, ( )j j

i iT T H
+ω +ω

+γ +γ=  

                                      (28) 

 

( )
( ) ( )

j j
j j i i 1

i 1i 1
i i 1

H H
 Hq T

x x

+ω +ω
+ω +ω −

− −γ− −γ
−

−
= −

−
, 

( ) ( )( )j j

i 1 i 1
T T H+ω +ω

− −γ − −γ
=  

                                                                                     (29) 

The heads on different nodes and intermediate times are 
obtained from Equation (24); these are introduced in 
Equations (28), (29), and these in Equation (27). The 
Equations (25) and (27) are put into the continuity 
equation and similar terms are associated, resulting in 
the following algebraic equations system: 
 

j 1 j 1 j 1

i i 1 i i i i 1 iA H B H D H   E+ + +
− ++ + = , i 2,3,..., n 1= −        (30)  

 

Where ( )

( )

j

i 1

i

i i i 1

T
A  

x x x

+ω

− −γ

−

ω
= −

∆ −
                        (31)

        

( )
jj j 1

i 1i i
i

i i 1 i i i 1 j

TT
B

x x x x x t

+ω+ω +
− −γ+γ

+ −

  υω
=  +  +

 ∆ − − ∆ 

                       (32) 

  

( )

j

i

i

i i 1 i

T
D

x x x

+ω

+γ

+

ω
= −

∆ −

                                    (33) 

 

( ) ( )

( ) ( )

j j j j
i 1i 1 i i 1j

i wi

i i i 1 i 1 i

jjj
i 1i ji

i

j i i 1 i i i 1

T H T H1
E   R

x x x x x

TT1
H

t x x x x x

+ω +ω
−− −γ +γ ++ω

− +

+ω+ω
− −γ+γ

+ −

 − ω
= +  + 

 ∆ − − 

  − ωυ
 + −  + 

 ∆ ∆ − −   

  

                                                 (34) 



 

 
 
 
 

For the head scheme, Equation (26), the coefficients iB  

and iE  should be redefined, replacing 
j 1

i

+υ  and 
j

iυ  in 

Equations (32) and (34) by 
j

i

+ωµ . The system (30) forms 

a tridiagonal matrix and can be solved using the Thomas 
algorithm. Due to the fact that the coefficients in the 

system (30) depend on the pressure 
j 1

iH +
, these are 

updated and the algorithm is applied again until the 

following estimator from the solution in j 1t +  is equal, 

given an error criterion, to the previous estimator. 

 
 
Radiation condition boundary 
 
For linearizing the boundary condition, one generalization 
of the conductance coefficient, presented in the 
discussions concerning Equation (19) is introduced as: 
 

2s 1

s

s s s

q L h

K h h

−
 

κ =  
 

                                    (35) 

 

It should be noted that κ  depends on the solution itself; 
however, as the process of solutions of system (30) is 
iterative, this parameter is calculated based on the 
previous estimation. 
 
 

Selection of the space ( )x∆  and time ( )t∆ increments 

 

According to Zataráin et al. (1998) the domain 
discretization is done so that the increased 

i i 1x x x−− = δ  is constant for i 4, 5... N 2= −  except in 

the drain vicinity. Thus, for 1x 0= : i) 2 1x x 0.4 x− = δ , 

3 2x x 0.6 x− = δ , 1x 0.1 x∆ = δ , 2x 0.6 x∆ = δ ; y ii) 

Nx L= , N N 1x x 0.4 x−− = δ , N 1x 0.6 x−∆ = δ , 

Nx 0.1 x∆ = δ . The interpolation value in the space is 

taken as 1 2γ =  in the domain, except in the first and 

last cells. The time discretization, given space’s, follows 
the classical approach of writing the equations of motion 
in dimensionless form, valid in homogeneous media, to 
obtain the relation between the spatial and temporal 
characteristics. 

Introducing dimensionless variables in the Boussinesq 

equation, Equation defined as: x x L∗ = , t t∗ = τ , 

sH H H∗ = , s∗µ = µ υ , 
2

w w s sR R L T H∗ = , 

where ( )s sHυ = υ  and s s sT K H= , it is possible to 

obtain   the   same   Boussinesq  equation  with  variables  
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with asterisks if 
2

s sL Tτ = υ . Due to the parabolic nature 

of the differential equation, the parameter 

( )
2

M x t∗ ∗= ∆ ∆  is defined, which can be found by 

comparing the finite difference solution with analytical 
solutions. The parameter value for the short times as 
recommended by Zataráin et al. (1998) is about 

M 0.1≅ . 

 
 
Comparison with an analytical solution 
 
In order to define the initial values of the interpolation 
parameters in space and time ( γ  and ω ), the numerical 

solution is compared to one analytical solution obtained 
from the Boussinesq equation in a particular case. This 
solution has been developed by a linearization of the 
differential equation represented by a constant 
transmissivity, but with a linear radiation condition in the 
drains and includes the Glover-Dumm classical equation 
(Dumm, 1954). The values used for the simulation are 

the ones given by Fragoza et al. (2003): L 50 m= , 

sK 0.557 m d= , 3 30.1087 m mµ = , 2T 2.5065 m d= , 

oD 3.5 m= , sH 5.0 m=  and 1.5κ = . With the 

purpose of showing the effect of the parameter M  in the 
numerical solution, many simulations were carried out, 
and the sum of squares error (SSE) obtained, assuming 

x∆  as the constant and varying the values ω  and M . 

The results are shown in Figure 2. In order to prevent the 
errors from remaining hidden in the short time, a 
calculation of the sum of squares errors was carried out 
for durations ranging from one day intervals up until 60 
days. Notice that the SSE is lower with values of ω  near 

to 1, and with values of M lower to 0.5. On the other 
hand, to decrease the value of ω , the errors in the 

solutions increase even with values lower than 0.5 in the 
parameter M, and the SSE increases significantly and 
conversely. Therefore, it was observed that when the 
value is M > 0.4 in the solution, instability is shown at the 
border, like that showing in Figure 3. In this case, the 
variation of decrease on free surface on the drain is 

shown with different interpolation steps ( )ω . The time 

discretization was done with x 1.00 m∆ =  and the time 

with t 0.01d∆ = , which corresponds to the value at 

M 4.33≅ ; this value is higher than that recommended 

by Zataráin et al. (1998) for the short time. For the 
simulations done and shown in Figure 3, it was noted that 
the optimal interpolation step which permits the numerical 
solution to match the analytical solution, given an error 

criterion is 0.98ω = . The same results are obtained 

when 1.00ω = . 
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Figure 2. Sum of the square errors with different values of M and ω . 
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Figure 3. Evolution of the free surface on the drain with different values of time interpolation factor ( )ω . 

 
 
 

Moreover, when the value of M 0.4< , the difference 

between the numerical solution and the analytical 
solution   with   different   values  of  ω   are  minimal.  An 

example of this is the one shown in Figure 4 where the 
profile decreases for two different values of M: M 0.43≅  

( x 1.00 m∆ =   and  t 0.10 d∆ = )  and  M 0.04≅  x 0.01 m∆ =
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Figure 4. Evolution of the free surface, a) M 0.43≅ , b) M 0.04≅ . 

 
 
 
(and t 0.0001 d∆ = ). With the first value of M , it can be 

seen that the difference between the different values of 
ω  are remarkable, and using the second value, the 

difference between the analytical solution and the 
proposed solution are minimal,  given  an  error  criterion. 

With the values x 0.01 m∆ =  and t 0.0001d∆ =  

previously obtained, a new simulation was carried out 
over a longer period of time; this simulation is shown in 
Figure 5. Here, the decrease of the free surface and the 
drained depth  by  unit  soil  area  is  shown.  The  results  
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Figure 5. Comparison between the analytical and numerical solutions: a) Evolution of free surface, b) 
Evolution of the drained depth. 

 
 
 
indicate that there is not a significant difference between 
the analytical solution and the finite difference solution. 

 
 
Comparison between both numerical schemes 
 
The   mixed   and   head   schemes   are   compared    by  

accepting the values 0.5γ =  and 0.98ω = . The soil 

used for this propose is the same as that used by 
Saucedo et al. (2003) with the values 3 3

s
0.5245 cm cmθ = , 

3 3

r 0 cm cmθ = and 
s

K 0.446 m d= . The values of the 

parameters of the hydrodynamics characteristics are: i) 

for   Fujita  and  Parlange  
c 0.521 mλ =   and  0.98α = ; ii)  
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Figure 6. Comparison between both numerical schemes: a) Evolution of the free surface, b) Evolution of the drained 

depth, using the Fujita-Parlange hydrodynamics characteristics. 

 
 
 
for van Genuchten with the Burdine restriction (1953) 

m 1 2 n= − , m 0.066=  and d 0.15 mψ = − . To 

compare both schemes, one distance of drain separation 

is proposed ( )L 25 m=  and the drain position is 

sH 1.5 m= . The results of the numerical solutions using 

both hydrodynamics characteristics are shown in Figures 
6 and 7. In  Figure  6,  the  evolution  of  the  free  surface 

decreased and the drained water for time up to 60 and 
250 days are shown, respectively, using the Fujita-
Parlange hydrodynamics characteristics. Figure 7 shows 
the same results, but with the van Genuchten 
hydrodynamics characteristics. Notice that there are no 
differences between the mixed and head schemes, with 
each hydrodynamics characteristics. 

These results demonstrate that using any of these 
schemes, the results will always be the same. 
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Figure 7. Comparison between both numerical schemes: a) Evolution of the free surface, b) 
Evolution of the drained depth, using the van Genuchten hydrodynamics characteristics. 

 
 
 

APPLICATION 

 
To evaluate the descriptive capacity of the numerical 
solution, a drainage experiment was conducted in a 
laboratory. The drainage module is the one used by 
Zavala et al. (2007). The module dimensions are: 

L 100 cm= , 
sH 120 cm=  and 

o
D 25 cm= . The  drain  diameter 

is d 5 cm=  and the drain length is 30 cm=l . The 

module was filled with altered sample of silty soil of the 
Mexican region of Celaya, Guanajuato, passed through a 
2 mm sieve; the soil was disposed on 5 cm thick layers, 
in order to maintain a constant apparent density. The soil 
was saturated by applying a constant water head on its 
surface  until  the  entrapped  air  was  virtually  removed.  
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Figure 8. Evolution of the experimental drained depth and drained depth obtained with fractal 
radiation and variable drainable porosity, using the head scheme. 

 
 
 

Once the drains were closed, the water head was 
removed from the soil surface; the surface of the module 
was then covered with a plastic in order to avoid 
evaporation. Finally, the drains were opened to measure 
the drained water volume; it is noteworthy that the initial 

condition was equivalent to ( ) sh x,0 H=  and the 

recharge was null wR 0=  during the drainage phase. 

Soil porosity ( )φ  is calculated with the formula 

t s1φ = − ρ ρ , where tρ  is the bulk density and sρ  is the 

particles density; with the bulk density is determined from 
the weight and volume of the soil of drainage module 

3

t 1.14 g cmρ =  and the particles density 

3

s 2.65 g cmρ = , 
3 30.5695 cm cmφ =  is obtained. 

The value of sK 1.15 cm h=  saturated hydraulic 

conductivity was estimated from a constant head test 
(Chávez, 2010). The soil fractal dimension obtained with 

Equation (18) is s 0.7026= . To minimize the root mean 

square error (RMSE) between the calculated drained 
depth with Boussinesq equation and the experimental 
drained depth, the conductance parameter was 
calibrated. Figure 8 presents the experimental drained 
depth compared to the calculated drained depth in 
function of time corresponding to fractal radiation 
condition and variable drainable porosity. Comparison 
showed that the drained depth experimental evolution 
with   the   drained   depth  obtained  from  the  numerical 

solution is the same. The final value of conductance 

parameter is 0.0616κ =  with RMSE 0.2195=  cm. 

These results indicate that water dynamics in a 
subterranean drainage system can be studied with the 
finite difference solution of the Boussinesq equation 
subject to fractal radiation in the drains and variable 
drainable porosity. 
 
 

CONCLUSIONS 
 

The non dimensional Boussinesq equation of the 
agricultural drainage systems has been solved using the 
finite differences method based on a mass local balance. 
Two discretization schemes of the time derivate were 
found: the mixed scheme and the head scheme. Both 
formulations are the same when the drainable porosity is 
independent of the head. Both schemes were validated 
with one analytical solution developed for lineal condition. 
The head water profile and the drained depth obtained 
with the analytical solution and calculated with the 
numerical solution, are the same for all the times tested, 
given an error criterion. The application of two schemes 
with the non lineal conditions is restricted. The absence 
of fluctuations for both in time and space to head and 
water depth, permit us to recommend the proposed 
numerical schemes for the non dimensional Boussinesq 
equation in the study of the water flow in the 
subterranean drainage systems. 

In particular, the numerical solution development may 
be used to obtain the soil  hydrodynamics  characteristics  
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through the inverse modelation; in other words, from the 
experimental data the parameter of system can be 
obtained. Furthermore, the numerical solution proposed 
in this investigation may be applied to the design of the 
subterranean drainage systems because the hypothesis 
used in the classical equation have been eliminated. 
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